

Frequency Domain Beamforming for a Deep Space Network Downlink Array

Robert Navarro

Melissa Soriano

Jet Propulsion Laboratory, California Institute of Technology

Introduction

- The Deep Space Communication Complex Downlink Array
- Time and Frequency Domain Beamforming
- Analyzer and Synthesizer Filterbanks
- Delay and Phase Corrections
- Array Calibrations
- Sub-Channels
- Conclusions

The Deep Space Communication Complex Downlink Array (DDA)

- Three DSN stations (Goldstone, CA; Madrid, Spain; Canberra, Australia)
 - Each has one 70m and multiple 34m antennas. More 34m antennas currently being built. Plan is four 34m antennas at each station.
- DDA to be used to augment and replace 70m antennas with multiple 34m antennas
- The DDA will coherently combine up to 8 inputs at an IF band from 100 to 600 MHz.
- Inputs will be either X band (8.4 GHz) or Ka-Band (32 GHz)
- Antennas used for spacecraft navigation, tracking, telemetry

Canberra 70-meter antenna

DSCC Downlink Array

High Level Functional View of DDA -

- 12D
 - Analog to Digital Conversion
- ASP
 - Delay and Phase Correction
 - Apply Gain & Combine Antenna
 - Correlate Each Antenna Pair
 & Send to BCF for feedback.
- D2I
 - Digital to Analog Conversion
- BCF
 - Monitor & Control Computer
 - Uses cross-correlations to calculate delay and phase corrections.

Time and Frequency Domain Beamforming

- In order to array DSN antennas in real time
 - Track changing delay due to Earth's rotation
 - Antennas are far enough apart, that Earth rotation causes Doppler shift between antennas.
 - Troposphere causes random path delay fluctuations seen as phase and delay differences across antennas.
- Need to handle telemetry bandwidths from 500 MHz down to 1 KHz.
- Data sampled at 1280 MHz, 8-bits.
 - In order to limit phase errors across the entire 100-600 MHz band, fractional clock delay corrections necessary
- High data rates necessitate processing the data among multiple Field Programmable Gate Arrays (FPGAs) for combining.
 - Data rate per antenna is ~10 Gbits/second.

Time and Frequency Domain Beamforming

Time Domain Beamforming

- Phase & Delay corrections applied to full sampling bandwidth
- Delays to sample clock resolution performed by large digital delay lines
- Fractional clock delays implemented using Finite Impulse Response Filters.
 - FIR filters cannot be implemented at 1280 MHz rate in FPGA. Must use parallel logic and lower clock rates (~200 MHz).
- Difficult to break data up among multiple FPGAs
- Correlations, for array calibration, require additional off line data path.

Frequency Domain Beamforming

- Input signals broken up to smaller frequency channels.
- Coarse delays still done with large digital delay lines
- Fractional clock delay implemented as phase shift across frequency channels.
- Processing can be easily partitioned by frequency across multiple FPGAs.
- Correlations, for array calibrations, can be performed inline with data.

Time and Frequency Domain Beamforming

Frequency Domain Beamforming Data Flow for the DDA

Analyzer and Synthesizer Filterbanks

- To process antenna signals as multiple contiguous frequency channels, an Analyzer-Synthesizer filterbank is used.
- Analyzer-Synthesizer Filterbank used based on Discrete Fourier Transform type Filterbanks.
- The filterbank has K channels, and each channel experiences a downconversion factor of M.
 - For critically sampled filterbanks, M=K.
 - For the DDA, the channels are oversampled: K/M = 1.25.
- Oversampled channels allow near-perfect reconstruction at the output of the Synthesizer filterbank.
 - phase rate corrections for geometric delay may be made in channel specific phase rotators without distortion to reconstructed signal

Analyzer and Synthesizer Filterbanks

Discrete Fourier Transform Filterbank Pair

Analyzer and Synthesizer Filterbanks

Filterbanks implemented efficiently using FFT based weighted overlap-add structures.

DSCC Downlink Array Delay Model

- The delay between antennas in a deep space antenna array has three components:
 Geometric, Instrumental and Tropospheric
- The Geometric Delay is predicable and can be modeled.
- The instrumental delay can be calibrated out through correlation measurements on radio sources.
- The tropospheric delay is random and requires a feedback loop to track.
- The Geometric Delay between each local antenna and a reference position on the ground can be modeled by the figure at right.
- The geometric delay has a delay & delay rate component to model the change in delay from a reference as the Earth rotates.
- In Frequency Domain Beamformer, this delay model applied individually to each frequency channel

Simplified Model of phase and delay corrections for correlation and combining

Delay and Phase Corrections

- The Delay model yields a fractional delay term expressed as a phase offset for a given frequency channel: $-\omega_{RF}(\tau_g-D)$
 - The phase offset is given by the RF frequency of the channel times the difference between the geometric delay and the delay quantized to the sample clock (D).
 - Fractional Delay correction done by applying this corrective term to each channel.
- Model also gives a frequency offset term, $\omega_{rf}\dot{ au}$
 - $-\omega_{rf}$ is the RF frequency of a given channel, and $\dot{\tau}$ is the geometric delay rate of each antenna to the reference.

Array Calibration

- Calibration performed using a feedback loop tracking array phase and delay versus a reference.
- Phase and delay measurements obtained from crosscorrelations of the individual channels of the frequency domain beamformer.
 - Delay estimates obtained from phase slope across channels.
- The amount of cross-correlations are Order(N²).
- The DDA can use different algorithms to take the correlation matrix and output delay/phase offset measurements.
- The frequency domain beamforming architecture allows the correlators and combiners (per channel) to share the same data stream.
 - Allows considerable savings of high data rate interconnections.

Array Calibration

- Phase offset applied across all channels in Frequency Domain Beamformer.
- Delay has similar loop. Delays larger than 1 sample clock applied in coarse delay line, fractional delays applied as delay slope across channels.

Sub-Channels

- Frequency channels in the DDA are 1.25 MHz in bandwidth.
- Low rate telemetry will all be contained in one or two channels.
- Maximum correlation signal to noise ratio obtained when telemetry is greater than or equal to a frequency channel band.

Sub-Channels

- DDA adds flexible sub-channels to handle lower telemetry rates.
 - Bandwidth of channels adjustable from 100 KHz down to 125 Hz.
 - Placement of sub-channels flexible among available frequency channels. Each sub-channel can be in a different channel or some can share a common channel.
- Sub-channels are not in-line with data. Used for correlations only.

Conclusions

- New antenna array for Deep Space Network designed and currently being implemented
- Coherently combines up to 8 inputs at an IF band from 100 to 600 MHz.
- Frequency Domain Beamforming Architecture
 - This architecture gives flexibility to handle multiple antennas at very high data rates.
 - It allows fractional clock delays to be handled in the frequency domain as a phase shift.
 - The channelized antenna data can be handled in-line for both combining and correlation, prior to re-synthesis to the time domain.
- Array supports telemetry bandwidths from 500 MHz down to 1 KHz using channels and sub-channels.